**Course Offerings**

- **Academic Career:** UGRD (Undergraduate)
- **Subject Area:** RNR (Renewable Natural Resources)
- **Catalog Nbr:** 170C1
- **Academic Organization:** 1239-RNR (Renewable Natural Resources)
- **Course Typically Offered:** SPRING
- **Co-Convened:** N
  - If Yes, Co-Convened with (ID and offer nbr): 0
  - Co-Convened Subject: Catalog Nbr:

**Enrollment Requirements**

**Course Requisite Information**

- **Requisite Type:**
- **Course ID:** Subject: Catalog Nbr:
- **Requisite Details**

**Existing Requirement Groups to be added**

**New Requirement Group Information**

- **Description:** Biology and the environment
- **Long Course Title:** Our place in nature: Biology and the environment
- **Long Description:** This course involves the study of nature. Our goal is to understand how living things and physical processes interconnect to produce the environments we live in. We explore the relevance of biology to contemporary issues in human society and the prospect of science-based solutions to problems in the environment, medicine, and agriculture.

- **First Term Effective:** 2141: Spring 2014
- **Course Type:** Permanent

**Instructors**

- **Instructor Name:** Steven Smith
- **Instructor ID:** 02907356

**Course Attributes**

<table>
<thead>
<tr>
<th>Course Attribute</th>
<th>Description</th>
<th>Course Attribute Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Education</td>
<td>T1-NATS</td>
<td>Tier 1 Natural Sciences</td>
<td></td>
</tr>
</tbody>
</table>
Explain the associated values for Course Equivalency or Mutually Exclusive courses:

**Additional Course Information**

<table>
<thead>
<tr>
<th>Minimum Units</th>
<th>Maximum Units</th>
<th>Instructor Edit</th>
<th>Add Consent</th>
<th>Drop Consent</th>
<th>Grading Basis</th>
<th>Grade Roster Print</th>
<th>Repeat for Credit</th>
<th>Total Units Allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>OPS</td>
<td>C</td>
<td>N</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allow Multiple Enroll in Term</th>
<th>Total Completions allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1</td>
</tr>
</tbody>
</table>

**Course Components**

<table>
<thead>
<tr>
<th>Course Component</th>
<th>Lecture</th>
<th>Graded Component</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default Section Size</td>
<td>30</td>
<td>Primary Component</td>
<td>Y</td>
</tr>
<tr>
<td>Workload Hours</td>
<td>3</td>
<td>Optional Component</td>
<td>N</td>
</tr>
<tr>
<td>Final Exam</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Funding Analysis**

What course, if any, does this course replace? Subject: 

*Is proposal of this course associated with a new hire? N* 

*If no new hire and no course deletion, explain what adjustments will be made in current faculty teaching assignments? This change in workload has been approved by the School of Natural Resources and the Environment, and the Director.*

*Intended Course Fees: NONE*

*What programmatic need does this course satisfy: required or optional in what undergraduate or graduate majors, minors, or certificates? TIER 1 Natural Science course for non-science majors*

*Field Trips: NONE*

*Provide a minimum of three learning outcomes for the course. In this course we will help you:*

1. Become an informed ¿citizen biologist¿ who is able to interpret and understand biological science in an objective manner. The course should prepare you to continue to learn about biology for the rest of your life.

2. Understand the core concepts within biology that are presented in the following statements:
   a. Basic units of structure define the function of all living things.
   b. Biological systems grow and change by processes based upon chemical transformation pathways and
are governed by physical laws.
c. The growth and behavior of organisms are activated through the expression of genetic information.
d. The diversity of life evolved over time by processes of mutation, selection and genetic change.
e. Living systems are interconnected and interacting and may be greatly influenced by human activity.

3. Become aware of and practice the activities biologists engage in. These include improving your ability to:
   a. Use observation, experimentation and hypothesis testing.
   b. Apply quantitative analysis and mathematical reasoning.
   c. Develop models to study complex systems.
   d. View biology as an interdisciplinary science.
   e. Communicate biology to others.
   f. Appreciate the relationships between biology and society.

Requester Details
Name: Kathleen Marie Hughes
Date: 04/08/2013
Email: khughes@email.arizona.edu
Phone: -
Department: School of Natural Resources and The Environment - Research

General Education
Please explain how the course satisfies the criteria below:

*Writing:
With 14 of the 16 in-person meetings of the course there will be an out-of-class assignment that will be due within 5 days. These will be primarily short essays/abstracts (at least two of which will involve the potential for review of drafts) or reports that involve problem statement and analysis documents, which may involve the use of text and some simple mathematics. Examples of the expected format for each type of assignment will be presented. Grading will involve evaluation of content and argument as well as organization and grammar. In both assignment types, some information gathering beyond that presented in the course will be required. One assignment will involve the production of a longer essay (>500 words) that will include application of learning from earlier in the semester. Over the entire semester these assignments will likely involve 12-16 pages (>3000 words).
Total number of pages the student must write: 12

*Will at least one writing assignment involve revision after the instructor has provided feedback on a first draft or revision after an assignment in which peers have provided feedback on a first draft? Y

*Does the proposed course focus on non-western area studies and/or have a diversity emphasis? N

*Honors:
There will be no separate Honors section for this course, at least in its first offering. Before this offering, the course instructor will file a Standard Contract form for this course with the Honors College and will offer the option for an Honors student to contract this course for honors credit. The expectations for such students and the course instructor and not the GTA will personally supervise all Honors contracts will depend on their particular interests and background and be determined after an initial meeting with the student. Many honors
outcomes are possible. One contract activity could be a more detailed analysis and presentation for one of the topics (assignments) from our in-person meetings. In addition to the required assignment the Honors student may conduct independent research and then write an extended essay. Instructor evaluation of drafts of this would be expected.

*Assessment:
Student assessment involves examinations (57% of final grade), on-line quizzes (17%) and assignments (26%). Examinations and quizzes focus primarily on assessment of knowledge recovery and first-order critical thinking skills. Examples include assessment of the student’s ability to locate and utilize evidence and their ability to relate an example to a concept. The assignments include some assessment of first-order skills, but also higher-order thinking as well. In these cases practice and feedback are critical for student success.
Lecture 30% (in-person)
Discussion 5% (as part of in-person meeting)
Lab 5% (as part of in-person meeting)
Practicum/Service 0%
Learning other: on-line lecture/reading/study/assessment/practice: 60%

As a hybrid course, an increased amount of instructor time will be dedicated to the evaluation of student assignments, including preliminary drafts, than would be common in a course with a traditional lecture format.

*Critical Thinking Skills:
A significant element of this course (especially the in-person lectures/discussions) will deal with the specific approaches that biologists use to understand how nature functions. This will especially involve the methods that biologists use to gather evidence to generate testable hypotheses, the analysis of results from their experiments, and then the synthesis of information to draw conclusions and reformulate hypotheses. All of these steps in theory involve practice of objective critical thinking.

*Interactive Modes of Instruction:
Selected assignments as well as in-class activities will involve students working with each other in four-student groups. These mini-project based assignments will occur in the latter third of the semester and therefore may involve some synthesis and information retrieval. In these activities, each student within a group will be required to submit their evaluation of their colleague’s contribution to the group’s final product as well as their own.

*Information Literacy:
One of the primary objectives always present in the  ¿background¿ of this course will be to help students to understand how biologists gather and interpret information in order to better understand how nature works. Information literacy is a critical component of this process. At least two assignments in this course will specifically address development and refinement of a student’s information.

*Explain how required readings and materials will be available to students:
This is a hybrid course where on-line content (Introduction to Biology) is provided by the Open Learning Initiative but will be accessed from links on the course D2L page. Additional material, primarily from published web sources will be made available as pdfs from the course D2L page. Some material related to experimental
activities may be distributed in a printed form in in-person class meetings.

*COURSE FORMAT* - Indicate the overall percentage of time spent in the following activities (total should add to 100%):

<table>
<thead>
<tr>
<th>Activity</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>100%</td>
</tr>
<tr>
<td>Discussion Section</td>
<td>0%</td>
</tr>
<tr>
<td>Lab</td>
<td>0%</td>
</tr>
<tr>
<td>Practicum/Service Learning</td>
<td>0%</td>
</tr>
<tr>
<td>Other</td>
<td>0%</td>
</tr>
</tbody>
</table>

*Will 40% of grade points be completed by the 8th week of classes? Y

---

**RNR 170 C 1 - Our place in nature: Biology and the environment**

General Education, Tier 1, Natural Sciences, 3 units, Spring Semester

"Science is always wrong. It never solves a problem without creating ten more."
George Bernard Shaw

---

**Course Description**

This course involves the study of nature. Our goal is to understand how living things and physical processes interconnect to produce the environments we live in. We explore the relevance of biology to contemporary issues in human society and the prospect of science-based solutions to problems in the environment, medicine, and agriculture.

**Recommended Background**

Some exposure to biology in High School may be helpful, but this is not required.

**Course Format and Expected Student Effort**

This is a “hybrid course” with on-line content from *Introduction to Biology*, which you will access from the course's D2L website, and one 50-minute lecture/discussion/activity per week. You should expect to spend about three hours each week working on-line with materials for this course. This will involve reading and completion of short graded quizzes to help you learn. Reading and other assignments associated with this course should require about one to two additional hours outside the classroom each week. **Learning on-line requires more discipline and organization than in a strictly in-person course.** (I’ve created a [document that you can download that explains more about success in on-line courses](#) and how the on-line part of this course will operate.)

**Locations and Times**

The “in-person” portion of the course is held from **12:00-12:50 every Wednesday throughout the semester in Room ____**. You are expected to be an active participant in our Wednesday meetings and therefore attendance is mandatory if you want to do well in this course. Midterm Exams will also be held Wednesdays during normal lecture time.
Instructor Information

Steve Smith

Office: 211 Biological Sciences East (the building about 100 m directly southwest of the Science and Engineering Library)
Mailbox: 325 Biological Sciences East
Contact: azalfalf@ag.arizona.edu, 621-5325 (voice only), Research web page
Office Hours: Wednesdays 8:00-8:45, 10:00-10:45; Thursdays 1:00-3:00 or e-mail for an appointment at some other time
Teaching assistant:
Course home page: D2L.arizona.edu, D2L Help Site

Communication

You are encouraged to contact Dr. Smith or the Teaching Assistant should you have questions or need assistance. Certain rules apply however. Failure to follow these rules will likely result in your communication being ignored:

1. In written communication, normal English grammar, punctuation and sentence structure are required. Abbreviations, as might be used in a text message, will not be read.

2. The composer of all messages (written or voice) must be clearly identified by first and last name and course number. In emails, this is best done in the subject line. Dr. Smith or the Teaching Assistant will not respond to anonymous messages or those not linked to a particular course.

Course Objectives

In this course we will help you:

1. Become an informed “citizen biologist” who is able to interpret and understand biological science in an objective manner. The course should prepare you to continue to learn about biology for the rest of your life.

2. Understand the core concepts within biology that are presented in the following statements:
   a. Basic units of structure define the function of all living things.
   b. Biological systems grow and change by processes based upon chemical transformation pathways and are governed by physical laws.
   c. The growth and behavior of organisms are activated through the expression of genetic information.
   d. The diversity of life evolved over time by processes of mutation, selection and genetic change.
   e. Living systems are interconnected and interacting and may be greatly influenced by human activity.

3. Become aware of and practice the activities biologists engage in. These include improving your ability to:
   a. Use observation, experimentation and hypothesis testing.
   b. Apply quantitative analysis and mathematical reasoning.
   c. Develop models to study complex systems.
   d. View biology as an interdisciplinary science.
   e. Communicate biology to others.
Appreciate the relationships between biology and society.

Required Content

Introduction to Biology, which is a free on-line learning platform, is required for this course. It is accessible from the course D2L website. Its use will be explained in the first lecture meeting and on the course FAQ page.

Other reading materials will be assigned during the semester and can be accessed from the Content section of the D2L website. No special tools, supplies or laboratory equipment are needed.

Topics covered

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics from Introduction to Biology</th>
<th>Wednesday class topic/activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1. Introduction – What is biology and how is it done</td>
<td>Course mechanics. Learning how to think like a scientist</td>
</tr>
<tr>
<td>2</td>
<td>2. Matter – a. Chemistry in living systems</td>
<td>Observation and asking questions</td>
</tr>
<tr>
<td></td>
<td>b. Biological macromolecules</td>
<td>Formulating hypotheses and designing experiments to test them</td>
</tr>
<tr>
<td>3</td>
<td>3. Life – Cells as the fundamental unit of life</td>
<td>Data collection and analysis</td>
</tr>
<tr>
<td>4</td>
<td>4. Energy – Metabolism: The chemical reactions that drive life</td>
<td>Midterm exam 1 (12 Feb)</td>
</tr>
<tr>
<td>5</td>
<td>5. Reproduction – a. Cell division builds organisms and allows them to reproduce</td>
<td>Science of biofuels</td>
</tr>
<tr>
<td></td>
<td>b. Production and transmission of genetic diversity</td>
<td>Photosynthesis and climate change</td>
</tr>
<tr>
<td></td>
<td>c. Storage, transmission and expression of genetic information</td>
<td>Diabetes: metabolism gone awry</td>
</tr>
<tr>
<td>10</td>
<td>6. Evolution – Genetic change and organisms response to the environment</td>
<td>Biology of memory</td>
</tr>
<tr>
<td>11</td>
<td>7. Interdependence – Living systems interact with each other and the non-living environment.</td>
<td>Agricultural solutions to food insecurity</td>
</tr>
<tr>
<td>12</td>
<td>8. Interdependence – Living systems interact with each other and the non-living environment.</td>
<td>Midterm exam 2 (2 April)</td>
</tr>
<tr>
<td>13</td>
<td>9. Interdependence – Living systems interact with each other and the non-living environment.</td>
<td>Evolution and influenza</td>
</tr>
<tr>
<td>14</td>
<td>10. Interdependence – Living systems interact with each other and the non-living environment.</td>
<td>Understanding the biology of obesity</td>
</tr>
<tr>
<td>15</td>
<td>11. Interdependence – Living systems interact with each other and the non-living environment.</td>
<td>Tracking nitrogen in the biosphere</td>
</tr>
<tr>
<td>16</td>
<td>12. Interdependence – Living systems interact with each other and the non-living environment.</td>
<td>Adaptation to a changing climate</td>
</tr>
<tr>
<td></td>
<td>13. Interdependence – Living systems interact with each other and the non-living environment.</td>
<td>Invasive species in a dynamic world</td>
</tr>
</tbody>
</table>

1 See Course Schedule in the Content Section of D2L website for additional details.
2 Wednesday in-person sessions will typically involve a short lecture to provide background information and then an individual or group activity (each worth 10 points) that may need to be completed outside class. The first four sessions deal with the basic tools used in science. Beginning in Week 4 (Topics with ⭐), we use examples of biology in contemporary society to present problem-solving experiences. Attendance is very important. Two 50-minute midterm exams will also be conducted in our Wednesday meetings.

Expected Learning Outcomes

(Examples represent potential student responses to a short essay question for a single outcome following completion of this course.)

Students completing this course should be able to:

1. **Identify and define key terms, concepts and techniques in biology**

   **Example:** Natural selection is one of the primary forces driving the evolution of biological diversity. A series of
experiments beginning in the early 20th century established that natural selection was associated with the accumulation adaptive genetic changes within populations in response to environmental conditions (Topic 6).

2. **Recognize, explain and relate key biological processes as they occur in nature**

   **Example:** Photosynthesis is the biological process through which light energy, water and carbon dioxide is captured and transformed into carbohydrates. This process occurs in plants, but the carbohydrates that are made provide the source of energy upon which all life forms depend. Within an organism the chemical energy ultimately originating from photosynthesis is further transformed through the process of respiration, which occurs in mitochondria of all living cells and produces usable energy that powers life (Topic 4).

3. **Apply biological understanding and experimental methods to interpret unfamiliar natural phenomena**

   **Example:** Typical processes of cell division and differentiation are not normally controlled in cancer cells and this lack of control may be largely responsible for the disease that these cells are associated with (Topic 3).

4. **Examine and analyze complex processes in nature to produce integrated explanations of these processes**

   **Example:** The element nitrogen is a critical component of all living things and exists within a planet-wide biogeochemical cycle. In this cycle, nitrogen exists in many different chemical forms, most commonly though as nitrogen gas ($N_2$) in the atmosphere, which is not usable by most life forms. Importantly, some bacteria (nitrogen fixers) are able to convert $N_2$ into molecules that other organisms can use. Other soil bacteria and fungi are also able to break down dead organisms to generate a variety of $N$-containing molecules that may then be utilized by other organisms (Topics 2 & 7).

5. **Use knowledge to formulate potential solutions to biological questions including those directly affecting human society**

   **Example:** Burning fossil fuels and deforestation have resulted in increases in atmospheric CO$_2$ (a greenhouse gas) that is associated with increasing average temperatures. Widespread reforestation efforts could help to remove CO$_2$ from the atmosphere and therefore mitigate climate change. Many factors would need to be considered to determine whether this could be successful including rates of photosynthesis and decomposition and longevity of the plants involved as well as economic incentives for this management strategy (Topics 2, 4 & 7).

6. **Summarize and discriminate among possible explanations of natural processes**

   **Example:** Obesity in humans may be related to genetic background, although genetics explains relatively little of the variation in this characteristic in human populations. Genes affecting obesity are most closely involved with regulation of certain metabolic events and with specific obesity related diseases. Despite recent improvements in genetic analysis tools, environmental factors within populations (diet, activity) continue to dominate the manifestation of obesity (Topic 5).

**Notification of Objectionable Materials**

This course covers a wide variety of topics in biology, some of which may be considered objectionable. We will discuss such topics as human reproduction and diseases including certain medical interventions, and the role of plants, animals, and microorganisms in nature, biological research and agriculture. Our goal is to conduct this course in such a way that materials that might be objectionable are presented in the most acceptable manner as possible. Consult the Course Schedule for topic coverage and discuss your concerns in advance with Dr. Smith.
Graded Activities and Grading Policies

Grades in this course will be based on your participation and performance in three activities:

1. **In-class assignments.** These are based on material presented in lecture/discussion/participation that occurs during Wednesday class meetings. These assignments will involve short written compositions, generally less than 250 words, but in one case >500 words. They may involve some mathematical calculations. Often they will provide you practice in writing clear, concise descriptions of scientific phenomena. Developing this sort of writing is a major activity of this course. Some of these assignments will involve working in small groups. These assignments are generally made available in class on Wednesday and are due in the Dropbox in the D2L website by 12:00 noon on the following Monday although sometimes they are due at the end of the class period in which they are presented. **No late submissions will be graded unless you have an excuse approved by Dr. Smith in advance of the due date.**

2. **On-line quizzes.** These are short (5-minute) automatically graded quizzes that are incorporated within *Introduction to Biology* modules. Quizzes are included to help you learn. You receive 2 points for each quiz completed on time regardless of your score on that quiz.

3. **Exams.** We have two 50-minute midterm exams and one 120-minute final exam. Exams cover information from all elements of the course presented up to the day of the exam. They involve short answer and multiple-choice questions. Only your highest single midterm exam score counts toward your final grade. **There are no make-up midterm exams.**

### Number of graded assignments, point values and percentages of final grades.

<table>
<thead>
<tr>
<th>Graded activity (% of total points)</th>
<th>Total number</th>
<th>Points per activity</th>
<th>% of final grade for individual activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments (26.4)</td>
<td>14</td>
<td>10</td>
<td>1.89</td>
</tr>
<tr>
<td>On-line quizzes (17.0)</td>
<td>45</td>
<td>2</td>
<td>0.38</td>
</tr>
<tr>
<td>Midterm exams (18.9)</td>
<td>2 (^1)</td>
<td>100</td>
<td>18.87</td>
</tr>
<tr>
<td>Comprehensive final exam (37.7)</td>
<td>1</td>
<td>200</td>
<td>37.74</td>
</tr>
</tbody>
</table>

\(^1\) Only highest single score counts toward final grade.

### Late work

Late work will be accepted only in rare circumstances. As soon as you realize that you will be unable to turn in work on time, contact Dr. Smith immediately via e-mail and explain your situation. He will determine whether late work will be accepted and will inform you of the revised due date and any penalties that will be applied to your grade for the work. **Late quizzes will not be accepted.**

### Changes in course content or graded activities

During the semester, Dr. Smith may modify topics covered in the course or in-class assignments. If this occurs, all students will be informed of the changes early enough to allow sufficient preparation. Likewise, there may be occasional opportunities for extra-credit work. These opportunities will be clearly defined by Dr. Smith, and the results of this work will be incorporated into calculation of final grades. **Personal requests for supplementary extra-credit opportunities will not be granted under any circumstances.**
Grade corrections

If you have a question about any grade you must consult with Dr. Smith within seven days of when the activity was submitted (i.e., due or exam date) regarding corrections. No grade changes are possible after this. This includes grades that are improperly entered in the Grades page of the D2L website. It is your responsibility to insure that your grades are entered correctly.

Grading scale for final grades

Final grades are not assigned based on any predetermined thresholds. However, they roughly follow this scale: 90-100% = A; 80-89.9% = B; 70-79.9% = C; 60-69.9% = D; < 60% = E. Thresholds are not negotiable once set by Dr. Smith for any course and semester.

Incomplete grades

Any incomplete grade given must be verified with a written agreement with the student that specifies the work to be done and a timetable for completion. Incomplete grades are assigned only in extreme circumstances when it is impossible for the student to complete a minor portion of the work required for a course. These grades are not to be used as a mechanism to retake a course because of generally poor performance. For more information see: http://www.registrar.arizona.edu/gradepolicy/incomplete.htm.

Course withdrawal

Students withdrawing from this course must notify the Dr. Smith prior to nonattendance in classes and execute a drop or withdrawal in accordance with the UA General Catalog. Any student failing to attend class in two or more successive (Wednesday) classes is subject to automatic withdrawal if arrangements have not been made between student and Dr. Smith in advance of the absence.

Attendance Policy

Attendance at in-person (Wednesday) class meeting times is absolutely crucial. In some cases, attendance may be taken and some portion of the 10 points associated with that week’s activity awarded based on attendance.

All holidays or special events observed by organized religions will be honored for those students who show affiliation with that particular religion. Absences pre-approved by the UA Dean of Students (or Dean designee) will also be honored. In both of these cases you must notify Dr. Smith via e-mail at least 10 days before your absence. He will attempt to provide you with an opportunity to access information and activities as similar to that provided students who are present in class. However, this will not involve complete repetition of the lecture/discussion presented to the remainder of the class.

Classroom Behavior

While in class you are expected to conduct yourself in a manner conducive to learning and in a way that does not interfere with other students’ concentration. All students must abide by the University's policy on threatening behavior. “Threatening behavior,” means any statement, communication, conduct or gesture, including those in written form, directed toward any member of the University community that causes a reasonable apprehension of physical harm to a person or property. A student can be guilty of threatening behavior even if the person who is the object of the threat does not observe or receive it, so long as a reasonable person would interpret the maker’s statement, communication, conduct or gesture as a serious expression of intent to physically harm.

All communication devices may not be used during class time for purposes unrelated to this course. Personal computers/tablets/smartphones may be used for note taking or reference during lecture and discussion (in mute mode), but must be shut off during examinations or at other times as determined by Dr. Smith.
Special Needs and Accommodations

Students who need special accommodation or services should contact the Disability Resources Center, 1224 East Lowell Street, Tucson, AZ 85721, (520) 621-3268, FAX (520) 621-9423, e-mail: uadrc@email.arizona.edu, http://drc.arizona.edu/. You must register and request that the Center or DRC send Dr. Smith official notification of your accommodations needs as soon as possible. Please plan to meet with Dr. Smith by appointment or during office hours to discuss accommodations and how course requirements and activities may impact your ability to fully participate. The need for accommodations must be documented by the appropriate office.

Academic Integrity

Students are encouraged to share intellectual views and discuss freely the principles and applications of course materials. However, graded work/exercises must be the product of independent effort unless otherwise instructed. Students are expected to adhere to the UA Code of Academic Integrity as described in the UA General Catalog.

Confidentiality of Student Records

Learn about your rights and the University’s responsibilities related to academic records at: http://www.registrar.arizona.edu/ferpa/default.htm

Subject to Change Statement

Information contained in the course syllabus, other than the grade and absence policy, may be subject to change with advance notice, as deemed appropriate by the Dr. Smith.